
Plant functional trait selection at the 
community level and implications 

for modeling environmental change



Outline

• Community-level trait selection
– Response-effect framework

• Traits that mitigate drought stress
– Deep roots
– Deciduous vs. evergreen

• Traits that mitigate heat stress
– PSII regulation (chlorophyll fluorescence measures
– VOC emissions



• “...community-level changes may amplify or 
dwarf physiological responses, resulting in 
changes in ecosystem processes that cannot 
be predicted by the physiology or morphology 
of individual plants present initially.”
– Suding et al. 2008
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Response-effect framework

• Response traits:  Traits that are selected as a 
response to environmental change.

• Effect traits:  Traits that feed back to 
ecosystem functions.



• Which scenario 
is most amenable 
to modeling?



Mechanisms of drought induced mortality

McDowell et al 2008



Deep roots

• Deep roots buffered water stress for 3 years of 
drought manipulation (Markewitz et al 2010).

• Evergreen forests NE Brazil maintain evapotransp
during 5mo dry period by deep soil water uptake 
>8m (Nepstad et al 1997)
– Up to 18m deep in forest!

• Deep roots also found in soil shafts at less 
seasonal (Manaus) and more seasonal 
(Paragominas) sites, and in Surinam (Nepstad et 
al 1997).
– A common phenomenon around Amazon?



Implications of deep roots

• Response or effect trait?



Implications of deep roots

• Amazon soil profiles
• Water stress durations
• Continued transpiration during dry periods
• Continued, maybe amplified, photosynthesis 

during dry periods



Ishida et al 2006:  Tropcial deciduous 
vs evergreen trees in Thailand

• As rainfall decreases, deciduousness increases 
(in Neotropics) (Medina 1995).

• High stomatal conductivity in deciduous trees
– Due to large diameter vessels (Sobrado 1993)

• Short wet season



Franco 2005, Cerrado forrest
• Deciduous leaves had 50% higher CO2 uptake rates 

(per leaf mass) than evergreen leaves
– Photoinhibition avoidance

• High specific leaf area (SLA) in deciduous
• Highly plastic stomatal regulation in deciduous
• Leafless period only 1-2 months
• Evergreen species showed decline in CO2 assimilation 

and stomatal conductance during dry season when 
VPD was highest
– Photoinhibition tolerance

• Higher annual CO2 assimilation in deciduous trees?



Drought in Amazon floodplains 
(Parolin 2000, 2010)

• Some floodplain species evolved from savanna 
habitats

• Flooding is analogous rainfall seasonality.
• Adaptive traits to flooding overlap with drought 

tolerance traits
• Most Amazonian floodplain tree species have 

small, thick leaves, with wax coatings to limit 
transpiration

• Waxes may primarily serve to prevent water 
influx during inundation (dual drought/flood 
purpose)



Drought in Amazon floodplains 
(Parolin 2000, 2010)

• Flooding reduces water status, which initiates 
leaf dropping.

• Leaf production remains low during flooding, 
but photosynthesis continues—a plastic 
response.

• Similar responses occur during the dry 
periods.



Implications: Deciduous vs. evergreen

• Response or effect trait?



Implications: Deciduous vs. evergreen

• Duration of dry period
– Stomatal regulation plasticity

• Timing of carbon uptake
• Alteration of transpiration regimes



Chlorophyll fluorescence

• Draw chlorophyll fluorescence
• Critical temperature (Tc) = T at which dark 

fluorescence (F0) dramatically increases.
• Thermal damage also assessed by Fv/Fm

– Related to maximum efficiency of PSII, ideally 
around .83 (Maxwell and Johnson 2000)

– Also see Weng & Lai (2005)



Inducing Tc increase

• Critical temperature only a few degrees C 
above actual in situ temperatures.

• and showed only marginal 
increases in T-crit when grown in elevated 
temps (Krause et al. 2010).

• Are other plants more plastic?



Seasonal Tc variability

Weng & Lai 2005



Air temp vs leaf temp

(Krause et al 2010)



Air temp vs leaf temp

• How do air temperature and solar irradiance 
contribute in concert to surface temperature?

• Will increasing air temp cause an increase in 
full-sun leaf surface temps?



Implications: thermal tolerance 
plasticity

• Response or effect trait?



Isoprene emission (e.g., Penuelas 2005)

• Most common trait linked to heat tolerance

• ~15% of vascular plants produce isoprene

• Raises membrane thermotolerance

• Reduces endogenous and exogenous oxidants
– Other VOCs may play the same role



VOC emission tracks PAR and Temp



Isoprene increases membrane tail 
hydrophobicity (Siwko et al. 2007)



Isoprene fumigation (Penuelas et al 2005)



Fumigation treatments

1 = ozone

2 = ozone + isoprene

Loreto et al 2001



Has isoprene emission been selected 
for in our B2 TRF?

• At six Amazon forest sites, % of isoprene 
emitting species = 25-57% (Harley et al 2004)

• Literature search: 10/14 = 71% of B2 TRF 
species produce isoprene.



Isoprene increases ozone

Isoprene + Nox => Ozone



Isoprene increases ozone
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• Community selection for isoprene emitters
•



Isoprene reduces ozone

OZONE



Isoprene reduces ozone

OZONE



Isoprene reduces ozone

OZONE



Implications: VOC emissions

• Response or effect trait?



Other important traits?

• Seedling survival
• Fire
• Fungal endophytes
• HSPs
• Endogenous antioxidants
• C4
• Isohydric vs anisohydric (Rosie Fisher – Caxiuana)
• Wood density
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